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Three common degradation models found in images are addi-
tive Gaussian noise, multiplicative speckle noise, and motion
blur. This paper presents three solutions to these three degra-
dation modes, in which the parameters of the model are un-
known, i.e. blind denoising. The additive Gaussian restora-
tion model uses a block frequency domain approach to esti-
mate the original image’s power spectral density and process
the coefficients according the estimated noise probability distri-
bution. The speckle noise approach builds upon a popular ad-
ditive denoising method, namely the Non-Local Means Denois-
ing method, by adding clustering. The motion blur approach
uses a Wiener filter and objective measurements to estimate the
blurring kernel. All three approaches prove to be successful in
addressing their respective degradation modes.
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Introduction. The topic of this paper is blind estimation and
restoration of typical image degradation models. The three
models selected for analysis are Additive Noise, Speckle
Noise, and Motion Blur. The degradation model is assumed
know a priori, so the blind component of this paper is deter-
mining the parameters of the individual models.
Additive noise is modeled by:

D = I+n (1)

Where D, I, and n represent the degraded image, the origi-
nal image, and a Gaussian distribution with mean 0 and vari-
ance σ2, respectively. A standard approach to removing ad-
ditive noise is the use of the optimal Wiener Filter for the
given noise variance. This paper uses the performance of
the Wiener Filter as a point of comparison. Other research
into additive noise reduction propose a block-based Singu-
lar Value Decomposition approach (1). Our proposed algo-
rithm uses a block-based (Discrete Cosine Transform) DCT
approach.
Speckle noise is defined by the following equation:

D = I+nI (2)

Once again D, I, and n represent the degraded image, the orig-
inal image, and a Gaussian distribution with mean 0 and vari-
ance σ2, respectively.
Speckle noise commonly appears in different imaging tech-
nologies, such as SAR (2) and ultrasound (3). It’s prevalence
in these applications make it a good candidate for denoising
research.
Speckle noise adds noise to an image differently than additive

noise in that it affects the image unevenly. Areas of the im-
age that are flat and bright will generally have a large amount
of noise and regions that are flat and dark will generally have
little noise. Regions of the original image that are high fre-
quency will continue to be high frequency after the noise has
been added.
Most methods of speckle noise reduction have focused on ei-
ther using wavelet transforms, such as (4) and (5), or using
temporal-adaptive filters which process multiple images of
the same scene for noise reduction, such as (6). The focus of
our work is to show how breaking a single image into clus-
ters gathered from statistics from the spatial domain can be a
boon for denoising techniques.
Motion Blur is defined by the following equation:

g(x,y) = f(x,y)∗h(x,y) (3)

where f(x,y) is the original image, h(x,y) is the blurring
point spread function, and g(x,y) is the degraded image.
Motion blur is caused by relative motion between the cam-
era and the object being captured (7). Many images are
captured everyday that have considerable amounts of motion
blur. Common examples include traffic cameras that capture
moving vehicles and pictures of athletes in motion. These ap-
plications make motion blur a good candidate for restoration
research.
Motion blur adds blurring by convolution of the image with a
blurring point spread function. The convolution creates an ef-
fect that makes the objects in the image seem to streak across
the image.
In the blind case, the blurring point spread function is un-
known, meaning the length and angle of the blurring are both
unknown. Previous methods have used Radon transforms,
Cepstral Method (7), and sparse approximation (8) to mea-
sure the motion blur kernel. The focus of our work is to iden-
tify if we can use the blurred image as a frame of reference
with noise level to identify the motion blur kernel.

Methodology.
Additive Gaussian Noise: Our algorithm uses a transform do-
main approach in attempt to estimate and isolate the noise.
The processing steps are outlined in the block diagram be-
low:
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Fig. 1. Additive Noise Block Diagram

First the 8x8 block DCT coefficients are computed and or-
dered according to the same zigzag sequence used by the
JPEG standard (9). Next, the Power Spectral Density (PSD)
of the noisy image is calculated. Given the fact that the PSD
of AWG Noise is flat, the noise variance can be estimated by
the smallest coefficients in the noisy PSD. Further more, an
estimate for the original PSD is obtained by subtracting the
noise variance from the noisy PSD. Following this estimation
step, a two pass processing approach is applied to the noisy
DCT coefficients.
First Pass: Process the statistically significant coefficients
first determined by a noise threshold. The expected value
of a DCT coefficient of AWG noise is given by:

E(AWG coeff) = σn
√

2 (4)

The threshold for significant coefficients is chosen as

significant if >= 2σn (5)

These coefficients are likely to be dominated by the original
image. In the first pass, all coefficients that pass the threshold
are averaged with other coefficients from the local 5x5 region
of blocks that are within the range of the current coefficient
± the threshold
Second Pass: Now the coefficients close to the noise level
need to be processed. It is unlikely to get a good estimate of
the original since the noise is high compared the value, so the
overall PSD estimate is used instead. It turns out that process-
ing the significant coefficients first accounts for the majority
of the PSD structure. Therefore in the second pass, all noisy
coefficients are scaled such that the estimated overall PSD is
matched. Important note: often times there is no energy left
to allocate and this results in setting that specific coefficient
to zero.
Final step: The final step is to compute the 8x8 block iDCT
to retrieve the processed result.
Multiplicative Speckle Noise: Our speckle denoising tech-
nique builds upon a preexisting denoising technique by
adding clustering. The method chosen for extension is
the popular Non-Local Means Denoising, implemented by
OpenCV as the fast Nl means denoising method, q.v. (10).
This technique assumes the noise is additive Gaussian noise.
This method works by evaluating each pixel in the degraded

image and searching in a search window for similar pixels.
The output pixel is a weighted average of the original pixel
and the pixels in the search window. The strength of the
weighting algorithm is based upon the similarity of the orig-
inal pixel and the pixel in the search region and a parameter
h. Specifically, the weighting algorithm is:

w(p,q) = e
− max(d2,0)

h2 (6)

, where w is the weighting function, p is the current pixel,
q is the pixel in the search region, d is related to the simi-
larity between the pixels at p and q, and h is set by the re-
searcher. This leads to the following results: 1) when many
similar pixels are found in the search region, the weighting
function is large and 2) the weighting function is directly cor-
related with the h parameter. When the weighting function is
large, the denoising method tends to blur a regions to a single
color, and when the weighting function is small, the denois-
ing method tends to maintain much of the information from
the noisy image.

(a) (b) (c)

Table 1. (a) The original image degraded with speckle noise with σ2 = 0.4. (b)
The degraded image restored with the Non-Local Means Denoising method and a
low h value. (c) The degraded image restored using the original Non-Local Means
Denoising method and a high h value.

This method can work well when the noise is consistent
across an entire image, given the h parameter is set correctly.
The failure of an h value that is too small or too large can
be seen in table 2. With a low h value, the tennis court re-
tains too much high frequency noise; with a high h value, the
crowd has been smoothed over.
With additive Gaussian noise, the h parameter can be set once
to achieve the appropriate denoising effect. In the case of
speckle noise, the noise is not consistent across the entire im-
age. The proposed solution to this problem is to add cluster-
ing to dynamically set the value of the h parameter based on
the statistics of the image region.
The two main tasks for solving this problem then become
to determine the appropriate number of clusters in an image
and how to set the value of the h parameter based on these
clusters. In the proposed method, the number of clusters is
determined by clustering the image 4 times with a different
number of clusters from 2 to 5. Clustering is performed by
breaking the image into 16x16 blocks and using the k-means
clustering algorithm. The validity of the clustering is deter-
mined by calculating the silhouette coefficient on each clus-
tering result. The clustering result with the best coefficient is
selected to proceed with the clustering algorithm. The clus-
tering is performed on the following statistics:

• the variance of the block
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Fig. 2. A block diagram of the speckle denoise method.

• the absolute value of the difference between the mean
and median of the block

• the 55th percentile of the block
• the 45th percentile of the block

After clustering, the h parameter is set for each cluster based
upon the center of each cluster. The algorithm for setting the
h parameter is:

hi = 575vidi (7)

, where hi is the h parameter for the ith cluster, vi is the cen-
ter of the ith cluster in the variance dimension, and di is the
difference between the ith cluster’s 55th percentile and 45th
percentile. Now the h parameters of each block have been
set. These h parameters can be very different from block to
block which commonly leads to some obvious blocking ef-
fects. This is remediated by performing a Gaussian blurring
across the h parameters before performing the Non-Local
Means Denoising method. Once all of the runs of the denois-
ing method have been run across the different clusters with
the associated h value, the different outputs are combined to
create the final denoised image.
Motion Blur: Our motion blurring correction technique in-
volves determining the correct motion blur kernel, and uti-
lizing a Wiener filter with the motion blur kernel on the de-
graded image. If a Wiener filter with an incorrect blurring
kernel is applied, the incorrect Wiener filter introduces arti-
facts, which causes the noise level of the image to increase.
Conversely, if a correct blurring kernel Wiener filter is ap-
plied, the Wiener filter introduces minimum noise artifacts,
meaning the noise of the image is at a minimum. If the noise
level is higher using both an undersized and oversized blur-
ring kernel when compared to the correct blurring kernel, the
correct blurring kernel is at a local minimum in noise level.

(a) (b) (c)

Table 2. (a) The motion blurred Barbara image. (b) The motion blurred Barbara
image with an applied Wiener filter with an incorrect motion blur kernel. (c) The
motion blurred Barbara image with an applied Wiener filter with the correct motion
blur kernel.

Fig. 3. A block diagram of the motion deblur.

If we assume that the Mean Squared Error of the blurred im-
age when compared to the non-degraded image, does not ex-
ceed the peak signal value of the non-degraded image, we can
assume that the that the blurred image has a PSNR of at least
20dB when compared to the non-degraded image.

PSNR= 20log10(peak value/MSE) (8)

In addition, if we assume that the reconstructed image using
the correct Wiener filter is close to the non-degraded image,
then we can conclude that the reconstructed image using the
correct Wiener filter will have a PSNR of at least 20dB when
compared to the degraded blurred image.
So, when the Wiener filter with the correct blurring kernel
is applied, the reconstructed image should have a PSNR of
at least 20dB when referencing the degraded image and at a
local minimum in noise level. So, we can determine the cor-
rect blurring kernel by iterating through Wiener filters with
various motion blurring kernels until the reconstructed image
has a PSNR of at least 20dB when referencing the degraded
image and is at a local minimum in noise level, and return-
ing that blurring kernel. We utilized the blind noise estima-
tion technique detailed in (11) to measure the noise level of
the image. The method uses covariance matrices of image
patches to estimate a Gaussian noise variance of the image
and return a noise level based on the Gaussian noise variance.

Results. Additive Gaussian Noise: Table 3 contains an ex-
ample processing result for additive noise. An example of
the intermediate processing steps with figures can be found
in Appendix A. The important results to note are high fre-
quency coefficients are preserved because each is coefficient
is treated independently. Furthermore, the difference image
has only a small amount of structure and closely resembles
the underlying noise so the algorithm is successfully sepa-
rating much of the noise. Additionally, more results can be
found in the Analysis Section when addressing the blocking
artifacts introduced by the process.
Multiplicative Speckle Noise: The results of the speckle de-
noising method vary from image to image. Images that have
clear, blocked regions of both high frequency and low fre-
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(a) (b)

(c) (d)

Table 3. (a) The original Barbara, undegraded image. (b) The original image de-
graded with additive noise with σ2 = 0.01 (PSNR = 20.03, SSIM = 0.393). (c) The
difference image between processed image and original. (d) The processed image
(PSNR = 26.46, SSIM = 0.719).

quency tend to produce a high fidelity output. Images that
have regions that overlap or do not align easily to blocking
tend to not produce as good of results.

(a) (b)

(c) (d)

Table 4. (a) The original tennis, undegraded image. (b) The original image de-
graded with speckle noise with σ2 = 0.2 (PSNR = 15.82, SSIM = 0.59). (c) The
degraded image restored with the new clustering method (PSNR = 18.05, SSIM =
0.76). (d) The degraded image restored using the original Non-Local Means De-
noising (PSNR = 17.67, SSIM = 0.71).

The tennis image in table 4 is an example of an image that
works well with our restoration method. The crowd in the
original image is a high frequency block and the tennis court
is a flat region.
Notably, the new method proposed in this paper outperforms
the original Non-Local Means Denoising method on both
PSNR and SSIM, regardless of the level of noise.
Motion Blur: A wide range of angles and lengths for motion
blur were tested. The results of the motion deblur method
generally return a reconstructed image with a PSNR greater
than 50dB when compared to the non-degraded image and a
SSIM approximately equal to 1.

Fig. 4. A plot of PSNR plot for reconstruction of degraded images with various
blurring kernals. The x-axis indicates the length of the blurring kernel that was
tested. The legend indicates which angle was tested. The y-axis indicates the
PSNR of the image reconstruction wnen compared to the non-degraded image.

Fig. 5. SSIM plot for reconstruction of degraded images with various blurring ker-
nals. The x-axis indicates the length of the blurring kernel that was tested. The
legend indicates which angle was tested. The y-axis indicates the SSIM of the
image reconstruction when compared to the non-degraded image.

Analysis. Additive Gaussian Noise: The results for the addi-
tive noise algorithm demonstrates that processing frequency
domain coefficients independently is a valid approach. How-
ever the block method implemented introduces quite notice-
able blocking artifacts to the denoised image. In order to
mitigate these artifacts, the same algorithm detailed in the
Methodology section can be run multiple times when using
different definitions of 8x8 block origin locations. That is
8x8 artifacts are reduced to 4x4 artifacts when running the al-
gorithm 4 times with blocks defined at (0,0),(4,0),(0,4),(4,4).
Any blocks that extend past the region of support are not pro-
cessed by that iteration. Finally, the resulting denoised im-
ages from each block definition are pixel-wise averaged to-
gether to provided an even better denoised image. Given the
original size was 8x8, there are 64 unique locations to define
blocks to process.
An example of the effects of processing offset blocks is
shown in Table 5. Note: all offset locations were defined on
a square grid extending the pattern described for the 4x case.
Seeing the results from the table, the initial 4x case provides
the most improvement. There is subsequent improvement as
the number of offset processed increases, but the benefit di-
minishes while the processing time increases greatly. As the
Table 5 shows, edges are preserved with this denoising ap-
proach. Averaging the offset blocks together causes the co-
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efficients originally set to zero to be reintroduced in order to
represent the block boundaries being averaged together. In-
terestingly, the resulting coefficients are quite accurate con-
sidering the given original noise level. More on this is avail-
able in Appendix A.

(a) (b)

(c) (d)

(e) (f)

Table 5. (a) The original cameraman image, zoomed in. (b) The original image
degraded with additive noise with σ2 = 0.025 (PSNR = 16.02, SSIM = 0.145). (c)
The degraded image restored with the a single block method (PSNR = 27.07, SSIM
= 0.659). (d) The degraded image restored using blocking method 4x (PSNR =
28.66, SSIM = 0.735). (e) The degraded image restored using blocking method 16x
(PSNR = 29.28, SSIM = 0.767). (f) The degraded image restored using blocking
method 64x (PSNR = 29.58, SSIM = 0.781).

So far only exemplar cases for additive noise processing have
been discussed in this paper. So considering everything that
has been covered, Figure 6 consolidates the PSNR results of
processing over a wide range of noise variances. In addi-
tion, the optimal 8x8 Wiener filter for that noise variance is
included for comparison. Figure 7 shows the same for the
SSIM results. Interestingly, the PSNR plot for the block pro-
cess and Wiener filter are very close together. The SSIM plot
diverges slightly as the noise gets large with the Wiener fil-
ter performing better. This is the blocking effects coming
into play. Just increasing to the 4x process performs better
than the Wiener filter at every variance. As seen in Table 5,
increasing further to the x16 and x64 provide marginal im-
provements above 4x.

Fig. 6. A plot of PSNR against variance of additive noise for the image Barbara.
The red line displays the PSNR of the degraded image. The yellow line displays
the PSNR of the degraded image after being restored by optimal 8x8 Wiener Filter.
The blue line displays the PSNR of the degraded image after being restored by a
single block process. The purple line displays the PSNR of the degraded image
after being restored by 4x block processes

Fig. 7. A plot of SSIM against variance of additive noise for the image Barbara.
The red line displays the SSIM of the degraded image. The yellow line displays the
SSIM of the degraded image after being restored by optimal 8x8 Wiener Filter. The
blue line displays the SSIM of the degraded image after being restored by a single
block process. The purple line displays the SSIM of the degraded image after being
restored by 4x block processes

Multiplicative Speckle Noise: The results of our speckle de-
noiser show the value of using spatial-based clustering to per-
form denoising. Speckle noise is similar to additive noise, but
it does not uniformly affect the image. Similarly, our denois-
ing method is like an additive noise denoising method but it
uses clustering to denoise different parts of the image to dif-
ferent degrees.
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Fig. 8. A plot of PSNR against variance of speckle noise for the image Lena. The
red line displays the PSNR of the degraded image. The yellow line displays the
PSNR of the degraded image after being restored by the Non-Local Means Denois-
ing method. The blue line displays the PSNR of the degraded image after being
restored by the new clustering method.

Fig. 9. A plot of SSIM against variance of speckle noise for the image Lena. The red
line displays the SSIM of the degraded image. The yellow line displays the SSIM
of the degraded image after being restored by the Non-Local Means Denoising
method. The blue line displays the SSIM of the degraded image after being restored
by the new clustering method.

Regardless of image type or level of noise, the new clus-
tering denoising algorithm outperformed the original Non-
Local Means Denoising method. In figures 8 and 9, it is
shown that no matter the level of noise, the new clustering
method outperforms the original method in both PSNR and
SSIM measurements. This shows the validity of clustering
images based upon spatial statistics and this technique could
be applied to other spatial denoising techniques to achieve
better results.
Computation time suffers under the new algorithm. If the
original Non-Local Means Denoising method takes td sec-
onds to compute, the new algorithm will take approximately
|hi|td + tc seconds to compute where |hi| is the number of
h parameters set across the image and tc is the time taken to
determine the best number of clusters. The number of h pa-
rameters can be larger than the number of clusters after the h
parameters are blurred to remove the blocking effects.
The most challenging aspects of implementing such a system
are to determine what statistics are the most useful for per-
forming the clustering and how to formulate the algorithm
to set the h parameters. The methods proposed in this pa-
per started with beliefs about how multiplicative noise would
affect different regions of an image and how those effects
would be visible in the statistics of a block. Tweaking the

parameters to produce consistent results was the final step.
There is no reason to believe that the statistics selected for
this proposed method or the final equation used for determin-
ing the h parameters are the ideal values and more work could
be done to determine how far this method could be pushed by
altering parameters.
It is worth noting that while this method outperforms the orig-
inal in terms of SSIM and PSNR regardless of image, some
images do produce poor results. These images tend to have
many high frequency edges and the different regions of the
image do not fall neatly into blocks. For example, the Bar-
bara image, featured in table 6, has noticeable problems in its
denoising. This method could be improved upon by investi-
gating how block size could affect these images and tweaking
both the clustering algorithm and the h parameter algorithm
to produce better results.

(a) (b)

(c) (d)

Table 6. (a) The original barbara, undegraded image. (b) The original image de-
graded with speckle noise with σ2 = 0.2 (PSNR = 13.93, SSIM = 0.31). (c) The
degraded image restored with the new clustering method (PSNR = 18.16, SSIM =
0.55). (d) The degraded image restored using the original Non-Local Means De-
noising (PSNR = 15.60, SSIM = 0.51).

Motion Blur: The results of our deblurring technique show
the value of using the blurred image as a reference image and
the noise level to restore the image. As seen from the re-
sults, the restored image from our algorithm generally has a
SSIM close to 1 and high PSNR for blurring kernels that had
a length greater than 3. The blurring kernels with a length of
3 or less failed our method.
The blurring kernels of length 3 or less gave a very small
blurring degradation to the original image. The small blur-
ring causes the Wiener filters to overcompensate more easily,
which causes the measured local minimum noise level to oc-
cur early. Similarly to a small length motion blurring kernel,
a short length Wiener filter adjusts the blurred image mini-
mally, which means the reconstructed image of a small length
Wiener filter will be similar to the blurred image, causing the
PSNR between the reconstructed image and the blurred im-
age to be above 20dB. These two facts cause our method to
reconstruct the image prematurely with the wrong Wiener fil-
ter utilizing an undersized blurring kernel.
For blurring kernels of length greater than 3, the blurring be-
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comes more evident and thus the premature nature of the
small length motion blurring kernel does not occur. In our
test set of motion blurring kernels of angles between 9 and
13 degrees and lengths between 2 and 20, the motion blur-
ring kernel of 13 degree angle and 20 length was the only
other case where the image was incorrectly reconstructed.
For this case, the reconstruction method reached an edge
case where the PSNR comparison between the wrongly re-
constructed image and the blurred image was 21dB, barely
above the 20dB threshold, and the noise level had reached a
local minimum noise level where the noise level was barely
less than the blurring kernels tested alongside it.

Fig. 10. A plot of the average error in angle estimation for the cepstral and Radon
transform methods when the length of the blurring kernel is 10.

Fig. 11. A plot of the average error in angle estimation for our blurring restoration
method when the length of the blurring kernel is 10.

The cepstral and Radon transform motion blur kernel pre-
diction techniques from (7) for motion blurring kernel with
length 10 usually predict a kernel within 2 degrees of the ac-
tual blurring kernel as seen in Figure 10. Our method when
given an input length of length 10 is able to accurately obtain
the angle for most cases as shown in figure 11.
The one case that our method failed in our image restoration
was for the restoration of a degraded image with a blurring
kernel of length 10 and angle of 121.5 degrees. For this case,
the tested Wiener filter with a blurring kernel of length 10
and angle at 121.5 degrees failed the local noise minimum
condition, as the test case before it, utilizing a blurring ker-
nel of length 10 and angle at 121 degrees, had very minimal
measured noise.
This case is an outlier of the 341 angles tested between 10

degrees and 180 degrees, but it does show that the local min-
imum noise condition may not always be applicable. Further
conditions may need to be placed on the image restoration
in regards to the noise level, such as increasing the definition
of what can classify the noise level as local minimum for the
image restoration.
Computation time of our process for blurring restoration
is slower than the cepstral and Radon transform methods.
While the cepstral and Radon transform methods are strictly
a calculation, our method needs to account for the iterations
of numerous Wiener filters.
If the angle and length of the blurring kernel are both not
known, then our max computation time can be computed as
the product of the total number of lengths tested, the total
number of angles tested, and the time it takes to test one
Wiener filter. The more lengths and angles are tested, the
more accurate the reconstruction will be.
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Appendix A

Fig. 12. Original and additive noise degraded image for barbara with with σ2 = 0.025.

Fig. 13. PSD plots vs DCT coefficients for original and distorted image as well as estimated PSD found by subtracting noise
variance estimate from distorted PSD. This results is a very faithful estimate of the original. The σ2 = 0.025 can be seen
as the minimum of the distorted PSD.

| Blind Denoising | 9



Fig. 14. Original and additive noise degraded coefficient 2. Additive noise looks the same in the frequency domain.

Fig. 15. Original and additive noise degraded image DCT coefficient plot for block (2,2) as well difference plot. The expected
value of the noisy coefficients is approximately an order of magnitude above the high frequency coefficients.
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Fig. 16. Original and processed image after running first and second pass on distorted coefficients. Blocking artifacts are
quite noticeable.

Fig. 17. Original and processed coefficient 2. Additive noise looks the same in the frequency domain. It is apparent which
coefficients were recovered and which were far enough below the noise to be set to zero. Strong edges are preserved.
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Fig. 18. Original and processed image DCT coefficient plot for block (2,2) as well difference plot. Statistically significant
coefficients estimated, noisy coefficients scaled down or set to zero.
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Fig. 19. PSD plots vs DCT coefficients for original and processed image. The processed result undershoots the original
given because the noise variance estimate generally estimates the variance high.
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Fig. 20. Original and single processed image DCT coefficient plot for block (2,2) compared to running the algorithm 4 times
with offset block indices. The small high frequency coefficients are reintroduced as the blocking artifacts are reduced.
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